One-ended subforests and whatnot let G be a loc. fin. eperiodic (= every component is infinite) pmp graph on a stundard probability space (X, M). Recall. The isoperimetric constant of h is AEX J(A) where $QA := \{x \in X \setminus A : x \in A\}$ al A canges over finite-component sete for G_{i} , i.e. G_{i} is component-finite. (3) Kaimanivich - Elek. Not M-hyperfinite <=> = pos-mensured Borel B s.t. P(G(B)>0. (4) June precented $\Psi(h) > 0$ $fact \forall x \in X \forall r, |B^{a}(x)| = (1+9(h))$

Main theorem (about pup one-ended subforect). Let h be a loc. fin. aperiodic pup graph. If h is nonhere 2-ended, then h admits a Bond a.e. I-ended spanning subforest. And the converse is also true.

Characterizations of M-lyperfinitess.

Det lit G be a Bind graph (X, t). A tinitizing (vertex) wit for G is a set C = X of. G-C := Glyne is component truite. The fractivity J-price for G is fp. (G) := inf J (C), c where C = X ranges over all Borel timizing cuts for G.

Null-preserving, i.e. Fundly in mill
99%, temma. Let be a Bord loc. Fin. graph on
$$(K_1, b)$$
. be is type-finite
 $c \Rightarrow fp. (a) = 0.$ In other words, the extricted to 39%
persect 5 We space is unponent-finite. Doubly $K \in K$,
 W^{m} $(h_{1})_{X} = h_{X}$. Thus $\exists h_{1}$ is the $\Im Y_{2} \notin \pi \in X$, we
have $(h_{1})_{X} = h_{X}$. Thus $\exists h_{2}$ is the $\Im Y_{2} \# \pi \in X$, we
have $(h_{2})_{X} = h_{X}$. Let S double by C the construct D
then C is a trivitiency cut of C is a M_{2} when
 $f_{2} \subset K$. Then C is a trivitiency cut of C is a M_{2} with
 $M_{2} \subset K$. Then C is a trivitiency cut of C is a M_{2} with
 $M_{2} \subset K$. Then C is a trivitiency cut of C is a M_{2} with
 $M_{2} \subset K$. Then C is a trivitiency cut of C is a M_{2} with
 $M_{2} \subset K$. Then C is a trivitiency cut of C is a M_{2} with
 $M_{2} \subset K$. Then C is a trivitiency cut of C .
Then $C_{1} \to M \times M_{2} \to M_{2}(K_{2}) \to M_{2}(K_{2})$ is a $M_{2} \to M_{2}(K_{2})$.
 $M_{2} \subset M_{2} \to M_{2} \to M_{2}(K_{2})$ is a full finitiency cut for C .
There $C_{1} \to M \times M_{2} \to M_{2}(K_{2})$ is the dense to
 $C_{1} \coloneqq V_{2} \subset M_{2} \to M_{2} \oplus M_{2}(K_{2}) \subset M_{2} \oplus M_{2}(K_{2})$
 $= V(C_{1}) \to M \oplus M_{2}(K_{2}) \subset M_{2} \to M_{2}(K_{2})$ is the dense to
 $C_{1} \coloneqq V_{2} \subset M_{2} \to M_{2} \oplus M_{2}(K_{2}) \subset M_{2} \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as more $M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as $M_{2} \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2}) \oplus M_{2}(K_{2})$
 $= 0$ as

By the hypothesis, I A = B of positive measure s.t. GlA is component - finite of $\mathcal{P}(\mathcal{D}_{A|B}) \leq \mathcal{L} \cdot \mathcal{P}(A)$. (Para B Then $\mathcal{D}_{G}A \leq \mathcal{L}A \vee \mathcal{D}_{A|B}$, so put $\mathcal{L} := \mathcal{A} \vee \mathcal{D}_{A}$) $f(\partial_{\alpha}V_{A}) \leq f(\partial_{\alpha}\overline{A}) + f(\partial_{\alpha}B_{A}) \leq 2 \cdot f(\overline{A})$ +Sif(A) = 2 \cdot f(V_{A}'). Hence A' untradict. The maximality of A.